Scalloped hammerhead sharks. Image via Daniel Kwok, Flickr.
Scalloped hammerhead sharks. Image via Daniel Kwok, Flickr.

Protecting Sharks

It’s been a good summer for shark conservation. On July 24th, Massachusetts Governor Deval Patrick signed a bill banning the possession and sale of shark fins in the state. While the 2010 Shark Conservation Act passed by Congress had prohibited shark finning and required sharks harvested in state waters to be brought to shore whole, it did not eliminate the market for imported shark fins in the U.S., where shark fin soup is sometimes priced at $100. With Massachusetts’ ban in place, a total of nine U.S. states and three U.S. territories have now joined in efforts to eliminate finning altogether.

Last month, scalloped hammerheads made national news when the species became the first shark to be placed on the U.S. Endangered Species List. The scalloped hammerhead is threatened by the commercial fishery for its fins—the sharks are highly valued in the fin trade because of their fin size and high fin ray count. They are also caught as bycatch by offshore longlines and gillnets.

This shark is found in warm and temperate waters across the globe; four scalloped hammerhead shark populations were placed on the endangered species list. The Eastern Atlantic and Eastern Pacific scalloped hammerheads were listed as “endangered,” and the Central & Southwest Atlantic and Indo-West Pacific scalloped hammerheads were listed as “threatened.” This listing prohibits the catch, sale, and trade of scalloped hammerheads in the United States.

These actions are a win for shark conservation, and they build on other state and federal protections for the approximately 400 shark species in the world, about 40 of which are found in U.S. waters. In New England, there are at least 26 shark species protected by state catch limits, size minimums, types of equipment permitted for use or a prohibition against their harvest. Some of the popularly-known protected sharks that cannot be harvested in New England include the great white (Carcharodon carcharia), basking (Cetorhinus maximus), longfin mako (Isurus paucus), and sand tiger shark (Carcharias Taurus).

Why protect the feared kings of the sea? Well, first of all, they’re just cool, and as this video shows, they’re not as dangerous as most people think.

Sharks also play a critical ecological role as the ocean’s apex predators.

Unfortunately, sharks take a relatively long time to grow to maturity, produce few offspring, depend on wide swaths of intact ocean habitat, and are very sensitive to ecosystem changes.  All of that means they’re exremely vulnerable to the effects of overfishing and habitat loss. Nearly half of the shark and ray species assessed by scientists for the International Union for Conservation of Nature are threatened or near-threatened with extinction, and around 100 million sharks are killed every year in commercial fisheries.

So while there have been some steps in the right direction, there’s still plenty more we can do to protect these great ocean fish, from research to habitat protection to improved fisheries management and bycatch reduction. The health of our marine ecosystems depends on it.

The Ocearch crew tags the great white Mary Lee. Image via Mass EEA.
The Ocearch crew tags the great white Mary Lee. Image via Mass EEA.

How to Tag a Great White Shark

Categories: Guest Posters

With the help of over 50 researchers from more than 20 institutions, the non-profit Ocearch has tagged and tracked sharks around the world, from South Africa to the Galapagos. In September 2012, this research mission came to New England for the first time when the great white shark dubbed “Genie” was tagged off of Chatham in Cape Cod, MA.

What does it take to wrangle one of the fiercest apex predators in the ocean? After hours of preparation, sport fishermen and scientists from Ocearch set out each day on the repurposed crab vessel M/V Ocearch, a boat about the same size as the sharks they’re searching for, and use chum to attract sharks while they scan the ocean surface.

Once sighted, a shark is baited and hooked, guided towards the Ocearch vessel, and hauled out of the water using a custom lift capable of supporting thousands of pounds in weight (great whites can weigh over 5,000 lbs).  The Ocearch captain jumps into the water and onto the platform with the shark and uses the shark’s tail helps to guide it onto the lift.

When the team pulled Genie on board and the water around her receded, her anxiety visibly increased, so Ocearch Captain Brett McBride threw a wet towel over her eyes. As she began to calm down, the Captain was able to remove the hook from her mouth and insert two hoses to cascade water over her gills. At this point the rest of the crew jumped onto the platform, sporting jeans and long-sleeve shirts, and began to take a series of measurements and tag Genie. Named for “the shark lady” Eugenie Clark, Genie measured at 14 feet, 8 inches and 2,292 pounds.

Using a power drill, Genie’s dorsal fin was fitted with a satellite tag, an accelerometer and an acoustic tag. Other researches collected blood and tissue samples to study back in the lab. Genie was out of the water for approximately 15 minutes before she was guided back into the ocean and the tracking began. 10 hours later, the accelerometer detached from Genie, floated to the surface and transmitted data regarding her swimming pattern and movements. Whenever Genie’s dorsal fin breaks the surface, her tracker transmits a signal to a satellite overhead, which produces an estimated geographical location for the shark. Where is Genie now? Enjoying herself on Virginia Beach, VA.

As of this summer, the “shark wranglers” working for Ocearch have successfully tagged well over 50 great white sharks around the globe. By tracking sharks like Genie, researchers are hoping to build an understanding of their migratory patterns, breeding grounds, birthing sites, feeding areas and general white shark behavior. This information will help protect some very important animals—great whites are apex predators, which means a healthy population is crucial to maintaining the balance of ocean food webs and ecosystems.

A blue shark swims just beneath the surface.
A blue shark swims just beneath the surface.

The Sharks of Cashes Ledge

Categories: Cashes Ledge | Guest Posters

When most of us imagine a shark, we picture something along the lines of Jaws’ famous antihero: a massive, blunt-nosed, white bellied monster: a great white shark. But great whites constitute only a tiny percentage of the world’s sharks, and New England has some incredible habitat for many of the other species that swim our seas. For example, out on Cashes Ledge—an underwater mountain range 80 miles off the New England coast that harbors some of the most incredible habitat in the Gulf of Maine—you might come across multiple fascinating species, among them the blue shark and the porbeagle shark.

The blue shark, a slender, blue-hued fish measuring up to 12.5 feet in length, often swims in schools organized by sex and size. This habit, along with the sharks’ tendency to use their schools as “packs” to heard prey into a concentrated group for easy feeding, has earned blue sharks the nickname “wolves of the sea”.

Blue sharks migrate up and down the Americas’ Atlantic coast, and may travel all the way from New England to South America in a migration year. They prefer cooler waters, however, and so are more likely to be spotted by divers in the colder north, because in these temperate waters blue sharks are more willing to approach shore. Blue sharks prefer water between 45 and 61 degrees Fahrenheit, and as New Englanders will ruefully agree, that makes them right at home here.

Squid constitutes a large part of the blue shark diet, but the sharks are not choosy, and hunt octopus, cuttlefish, bony fish, lobster, and even sea birds. Some blue sharks have been observed snatching cod from trawl nets. The sharks themselves are sometimes hunted by orca whales—coincidentally also nicknamed “wolves of the sea”—but their primary predators are humans. An estimated 20 million blue sharks are caught each year, both as bycatch in commercial fisheries and as a directly targeted species by commercial fishermen and sport fishermen. The blue shark is currently listed as “Near Threatened”  by the IUCN Red List of Threatened Species.

A porbeagle shark. Image via Wikimedia Commons.

A porbeagle shark. Image via Wikimedia Commons.

Porbeagle sharks boast both a memorable name and impressive lifespan: around 65 years, which is more than triple the estimated lifespan of the blue shark. Shorter and bulkier than blue sharks, porbeagles have dark grey bodies, white underbellies, and rounded heads. They grow to around 11.5 feet and weigh about 300 pounds at maturity. Porbeagles are also migratory sharks adapted to cool waters, but they stay farther north and closer inshore than blue sharks do, feeding off the Canadian coast and migrating south to the Sargasso Sea to breed. They rarely swim more than 200 meters deep, yet, sadly, divers are unlikely to come across them—the IUCN Red List classifies porbeagles as endangered in the northwest Atlantic.

Due to its unique and productive landscape, a decade of protection from underwater trawling, and its location along the sharks’ migratory route, Cashes Ledge provides a perfect refuge for these incredible but threatened sharks. Divers admiring the kelp forests, anemone beds and schools of rare and threatened fish might be lucky enough to spot a pack of sleek blue wolves of the sea or a dark gray porbeagle as the sharks pause in their coastal migration at this sanctuary in the sea.

A great white shark circles gray seals off Chatham, MA. Photo via Mass. Office of Energy and Environment
A great white shark circles gray seals off Chatham, MA. Photo via Mass. Office of Energy and Environment

The Ocean’s Top Predators

In “Ocean Soul,” world-renowned National Geographic photographer Brian Skerry says, “It’s been said that sharks have remained unchanged for hundreds of millions of years because they are perfect and that no further evolutionary change is necessary.”

Sharks have certainly reached the top of the food chain as the ocean’s apex predators. Apex is a word of Latin origin meaning peak or tip. In ecological terms, apex is used to describe an animal that has no natural predator within its ecosystem—terrestrial examples include wolves and cougars.

Although humans might find them terrifying, apex predators are crucial for maintaining healthy ecosystems. Sharks, for example, play a vital role in balancing ocean food webs. They aid in population control of smaller predators, so that prey species are able to exist at healthy levels. They also regulate the behavior and abundance of prey species, protecting habitat like seagrass beds and coral reefs from overgrazing, and promote biodiversity by preventing any single prey species from monopolizing resources.

Sharks also tend to prey on weak or sick members of a species, so as to minimize their caloric hunting expense. This natural tendency towards efficiency promotes healthier populations by advancing the transmission of strong genes, as weaker genes are taken out of the gene pool.

Despite the enormous amount of good we know sharks do for ocean ecosystems, humans hunt sharks for their meat, especially their fins. Sharks can also become collateral damage to commercial fishing for other species—accidental net entanglements or hooking often prove lethal. According to a 2013 report published in “Marine Policy,” humans killed approximately 100 million sharks in 2000, and 97 million in 2010. Annually, humans kill between 63 and 273 million sharks.

What happens when the oceans begin to feel the loss of sharks? Populations of smaller predator species boom, stressing habitats and depleting populations of prey species. These changes can be very detrimental to the fishing industry. For example, depleted great white shark populations have been linked to the boom in gray seal numbers in New England, and the voracious appetite of the seals may be harming the recovery of overfished cod. In North Carolina, a decline in large sharks because of overfishing led to an increase in cownose rays, one of the sharks’ prey species. Cownose rays eat shellfish, and so an increase in their population caused the bay scallop fishery to collapse.

Clearly, apex predators like sharks are absolutely critical to maintaining healthy marine ecosystems. The role of apex predators is better understood today than ever before, and now that we know how vital their role is, it is time to protect and respect the ocean’s top predators.

A salt marsh in Bourne, MA. Image via Roey Ahram, Flickr
A salt marsh in Bourne, MA. Image via Roey Ahram, Flickr

Ocean Plants Part 1: Salt Marshes

Categories: Guest Posters

Here on New England Ocean Odyssey, we talk a lot about the marine animals that make New England’s ocean so special—from fish to turtles to whales and everything in between. But we thought it might be time to recognize some of the plants—and the habitats they create—that support the incredible productivity of our ocean. This series of posts will focus on just a few of these important types of plant life.

We’ll start with salt marshes, one of the most important plant-based habitat types in New England. Salt marshes are coastal wetland areas that are flooded and drained by salt water tides. They exist on shorelines around the world, where freshwater habitats meet saltwater habitats and terrestrial environments meet marine environments.

Marsh soil comprises peat moss and mud. In New England, the diverse plant life that supports this habitat ranges from reeds and grasses to flowering roses, succulent worts, and shrubs like bayberry and elder.

Conditions in marshes can be tough. In New England, salt marshes are exposed to two high and two low tides each day, creating strong currents, very salty soil, and widely varying moisture levels. The ecosystem must also endure temperatures ranging from below freezing to 90° F in the summer. The frequent submersion of salt marshes under water, along with the constant decomposition of plant matter, also leads to low levels of oxygen in soil. This condition is referred to as hypoxia, and it’s also related to the bacteria that give off the sulfurous, rotten-egg smell of many marshes.

Salt marsh plants are well adapted to deal with these tough conditions. For example, near surface roots of S. alterniflora help to oxygenate roots further down in the soil. Another plant mechanism to achieve oxygenation is to have aerenchyma tissue, air passages that allow a plant to transport oxygen from the atmosphere to its roots beneath the soil.

Salt marshes are a critical ecosystem component in New England. They support healthy fisheries, protect coastlines and coastal communities from flooding, nurture 75 percent of fisheries species such as shrimp, blue crab and finfish, and aid in carbon sequestration. Salt Marshes also filter pollutants like excess nitrogen prior to their reaching the ocean.

Unfortunately, salt marshes are threatened by coastal development, nutrient pollution from fertilizers, marsh draining to attempt to control mosquitoes, and other environmental stresses. For example, 50 percent of Narragansett Bay’s salt marshes have been lost in the last three centuries, and much of what remains is damaged.

For the four million remaining acres of salt marshes along the United States’ coastline, sea level rise is an imminent threat. Given enough adaptation time, salt marshes are able to increase their elevation by accumulating layers of soil matter while simultaneously receding inland, but they may not be able to keep up. Currently, Rhode Island documented a sea-level rise of 3.6 millimeters a year, but salt marshes are only growing at 2.9 millimeters per year.

Hopefully, efforts to mitigate sea level rise and restoration efforts will give our critically important salt marshes and the marine life that depend on them a little more time to adapt.